1 The velocity of a model boat, $\mathbf{v} \mathrm{m} \mathrm{s}^{1}$, is given by

$$
\mathbf{v}=\binom{5}{10}+t\binom{6}{8}
$$

where t is the time in seconds and the vectors $\binom{1}{0}$ and $\binom{0}{1}$ are east and north respectively.
(i) Show that when $t=2.5$ the boat is travelling south-east (i.e. on a bearing of 135°). Calculate its speed at this time.

The boat is at a point O when $t=0$.
(ii) Calculate the bearing of the boat from O when $t=2.5$.

2 The acceleration of a particle of mass 4 kg is given by $\mathbf{a}=(9 \mathbf{i}-4 t \mathbf{j}) \mathrm{m} \mathrm{s}^{2}$, where \mathbf{i} and \mathbf{j} are unit vectors and t is the time in seconds.
(i) Find the acceleration of the particle when $t=0$ and also when $t=3$.
(ii) Calculate the force acting on the particle when $t=3$.

The particle has velocity $(4 \mathbf{i}+2 \mathbf{j}) \mathrm{m} \mathrm{s}^{1}$ when $t=1$.
(iii) Find an expression for the velocity of the particle at time t.

3 The position vector, r, of a particle of mass 4 kg at time t is given by

$$
\mathbf{r}=t^{2} \mathbf{i}+\left(5 t-2 t^{2}\right) \mathbf{j},
$$

where \mathbf{i} and \mathbf{j} are the standard unit vectors, lengths are in metres and time is in seconds.
(i) Find an expression for the acceleration of the particle.

The particle is subject to a force F and a force $12 \mathrm{j} N$.
(ii) Find \mathbf{F}.

4 A ring is moving on a straight wire. Its velocity is $v \mathrm{~m} \mathrm{~s}^{-1}$ at time t seconds after passing a point Q . Model A for the motion of the ring gives the velocity-time graph for $0 \leqslant t \leqslant 6$ shown in Fig. 7 .

Fig. 7

Use model A to calculate the following.
(i) The acceleration of the ring when $t=0.5$.
(ii) The displacement of the ring from Q when
(A) $t=2$,
(B) $t=6$.

In an alternative model B , the velocity of the ring is given by $v=2 t^{2}-14 t+20$ for $0 \leqslant t \leqslant 6$.
(iii) Calculate the acceleration of the ring at $t=0.5$ as given by model B .
(iv) Calculate by how much the models differ in their values for the least v in the time interval $0 \leqslant t \leqslant 6$.
(v) Calculate the displacement of the ring from Q when $t=6$ as given by model B .

